Predicting Exam Performance from Mastery Homework

Devyn Shafer and Tim Stelzer

そ ILLINOIS

Motivation

Physics 100 Grades and Outcomes

Our Data

Physics 100 Midterm Exam Scores, Fall 2016 ($\mathrm{N}=408$)

Mastery Homework

An Example

Cumulative Mastery

8

1) What is the direction of the of the spring force acting on M in equilibrium?
$+\hat{y}$
$\mathrm{F}_{\text {spring }}=0$
$-\hat{y}$
Submit
\oplus

There seems to be a difference... but how do we quantify it?

$$
\begin{gathered}
\sum_{\substack{\text { Problem } \\
\text { Sets }}} \text { Final Score } \\
\sum_{\substack{\text { Problem } \\
\text { Sets }}} \text { First Attempt } \\
\sum_{\substack{\text { Problem } \\
\text { Sets }}}\left(\sum_{1}^{4} \text { Attempt }_{n}\right)
\end{gathered}
$$

Odds Ratio

For each score on each problem, calculate an odds ratio:

$$
\mathrm{r}_{\mathrm{i}}=\frac{\# \text { Students with bottom third of exam scores }}{\# \text { Students with top third of exam scores }}
$$

Likelihood Score $=\prod r_{i}$

Method Comparison

ROC Curve for Identifying Low-Performing Students

Comparison: What if we want to identify just half of the at-risk students?

False Positives when True Positive Rate = . 5

Note: Labels represent percentage of high- or middle-scoring group identified as at risk

What about three-quarters?

False Positives when True Positive Rate = . 75

■ False Positives from Students Scoring between 63% and 80% on the Exam, Inclusive ($\mathrm{N}=149$)
■ False Positives from Students Scoring above 80% on the Exam ($\mathrm{N}=129$)

Takeaways

- Student responses to mastery problems have information for identifying at-risk students.
- The odds ratio using all mastery score information provided better discrimination than simply using the sums of first or final attempts.
- Even in a class of 408 students, the odds ratio is limited by the sample size.

